Chemical Reactions

Objectives

- State four observations that are evidence for a chemical reaction:
 - Release of a gas.
 - Production of an insoluble substance.
 - Permanent color change.
 - Heat released or absorbed.
- □ Identify seven elements that occur naturally as diatomic molecules: H2, N₂, O₂, F₂, Cl₂, Br₂, I₂.
- Write a chemical equation from the description of the equation.
- Balance a chemical equation.

Objectives

□ List 5 types of chemical reactions:

- Combination reaction.
- Decomposition reaction.
- Single-replacement reaction.
- Double-replacement reaction.
- Neutralization reaction.
- Write a balance chemical equation for a reaction between a metal and a nonmetal.
- Write a balanced chemical equation for the

Objectives

- Write a balanced chemical equation for the decomposition of a metal carbonate.
- Write a balanced chemical equation for the decomposition that releases oxygen gas.
- Use the activity series to predict whether a single replacement reaction will occur.
- Write a balanced chemical equation for the reaction of a metal in an aqueous solution.
- Write a balanced chemical equation for the reaction of a metal in an acid.

- Write a balanced chemical equation for the reaction of an active metal in water.
- Use the general solubility rules to predict whether an ionic compound dissolves in water.
- Predict the products that result from a double replacement reaction.
- Write a balanced chemical equation for the reaction between two aqueous solutions.
- Write a balanced chemical equation for the reaction between an acid and a base.

Evidence for Chemical Reactions

- Release of a gas.
- Production of an insoluble substance (precipitate).
- A permanent color change.
- Heat being given off or absorbed
 - Exothermic A reaction in which heat is given off.
 - Endothermic A reaction in which heat is absorbed.

Chemical Equations

- An equation for a general chemical reaction:
 - $\mathsf{A} + \mathsf{B} \xrightarrow{\Delta} \mathsf{C} + \mathsf{D}$
 - □ A and B are **reactants**.
 - C and D are products.
 - $\Box \rightarrow$ is the **yields** sign. It points from the reactants to the products.
 - + indicates that two or more reactants are involved, or that two or more products are produced.
 - $\hfill\square$ Δ indicates that heat is given off or absorbed.

Diatomic Molecules

Diatomic Molecules:

H₂
 N₂
 O₂
 F₂
 Cl₂
 Br₂
 I₂

- □ The number of atoms of each element must be the same on each side of the yields sign.
 - Write the reactants and products.
 - Add coefficients to balance the equation.
- **Example:**
 - Write the reactants and products:
 - $\Box H_2(g) + Cl_2(g) \rightarrow HCl(g)$
 - Add coefficients to balance the equation:
 - $\Box H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

□ Example:

- Write the reactants and products: □ Al(s) + $O_2(g) \rightarrow Al_2O_3(s)$
- Add coefficients to balance the oxygen:
 □ Al(s) + $3O_2(g) \rightarrow 2Al_2O_3(s)$
- Add coefficients to balance the aluminum:
 - $\Box 4AI(s) + 3O_2(g) \rightarrow 2AI_2O_3(s)$

Example:

- Write the reactants and products:
 □ Pb(NO₃)₂(aq) + KI(aq) → PbI₂(s) + KNO₃(aq)
 Add coefficients to balance the nitrate:
 □ Pb(NO₃)₂(aq) + KI(aq) → PbI₂(s) + 2KNO₃(aq)
 Add coefficients to balance the potassium:
 - $\square Pb(NO_3)_2(aq) + 2 KI(aq) \rightarrow PbI_2(s) + 2 KNO_3(aq)$

- □ A method for balancing equations:
 - Check to make sure that the formula subscripts are correct.
 - Balance each element in the equation by placing a coefficient in front of each substance. Coefficients of 1 are assumed and do not appear in the balanced chemical equation.
 - Begin balancing the equation with the most complex formula.
 - Balance polyatomic ions as a single unit unless the ion decomposes.
 - Use only whole number coefficients.
 - Check each element or polyatomic ion to verify that the same number of atoms appear on both sides of the equation.

Examples:

- $Ca(C_2H_3O_2)_2(aq) + K_3PO_4(aq) \rightarrow Ca_3(PO_4)_2(s) + KC_2H_3O_2(aq)$
- $3Ca(C_2H_3O_2)_2(aq) + 2K_3PO_4(aq) \rightarrow Ca_3(PO_4)_2(s) + 6KC_2H_3O_2(aq)$
- $Al_2(SO_4)_3(aq) + Ba(NO_3)_2(aq) \rightarrow BaSO_4(s) + Al(NO_3)_3(aq)$
- $Al_2(SO_4)_3(aq) + 3Ba(NO_3)_2(aq) \rightarrow 3BaSO_4(s) + 2Al(NO_3)_3(aq)$
- $H_2SO_4(aq) + NaOH(aq) \rightarrow Na_2SO_4(aq) + HOH(I)$
- $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2HOH(I)$
- $H_2CO_3(aq) + NH_4OH \rightarrow (NH_4)_2CO_3(aq) + HOH(I)$
- $H_2CO_3(aq) + 2NH_4OH \rightarrow (NH_4)_2CO_3(aq) + 2HOH(I)$

$\square Combination Reactions: A + Z \rightarrow AZ$

- Metal and oxygen gas: □ $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
- Nonmetal and oxygen gas: □ $S(s) + O_2(g) \rightarrow SO_2(g)$
- Metal and nonmetal:
 □ 2Na(s) + Cl₂(g) → 2NaCl(s)

Decomposition Reactions:

- Decomposition of a Hydrogen Carbonate:
 - $\square 2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$
- Decomposition of a Carbonate:
 - $\square \operatorname{Na_2CO_3(s)} \rightarrow \operatorname{Na_2O(s)} + \operatorname{CO_2(g)}$
- Decomposition of an oxide:
 - $\square 2HgO(s) \rightarrow 2Hg(s) + O_2(g)$

□ Single Replacement Reactions: $A + BZ \rightarrow AZ + B$

- The activity series for metals: Li > K > Ba > Sr > Ca > Na > Mg > Al > Mn > Zn > Fe > Cd > Co > Ni > Sn > Pb > (H) > Cu > Ag > Hg > Au
- Active metals series: Li > K > Ba > Sr > Ca > Na
- Activity series for the halogens: F > Cl > Br > I
- Metal and aqueous solution:
 - $\Box \quad Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$
- Metal and aqueous acid solution:
 - $\Box \quad \text{Fe(s)} + 2\text{HCl(aq)} \rightarrow \text{FeCl}_2(aq) + \text{H}_2(g)$
- Active metal and water:
 - $\Box \quad Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$

□ Double Replacement Reactions: $AX + BZ \rightarrow AZ + BX$ $2AgNO_3(aq) + Na_2CO_3(aq) \rightarrow Ag_2CO_3(s) + 2NaNO_3(aq)$

Solubility Rules

- 1. Alkali metals ions and the ammonium ion are generally soluble.
- 2. The acetate ion is generally soluble.
- 3. The nitrate ion is generally soluble.
- 4. Halide ions except silver, mercury, and lead are generally soluble.
- 5. The carbonate ion is generally insoluble except for rule 1.
- 6. The chromate ion is generally insoluble except for rule 1.
- 7. The phosphate ion is generally insoluble except for rule 1.
- 8. The sulfide ion is generally insoluble except for rule 1 and cadmium, barium, and strontium.
- 9. The hydroxide ion is generally insoluble except for rule 1 and calcium, strontium, and barium.

□ Neutralization Reactions: HX + BOH \rightarrow BX + HOH HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + HOH(I)