Stoichiometry

Objectives

\square Write a unit equation for a balanced chemical equation that relates the number of moles of one substance to the number of moles of another substance.
\square Perform mole-mole stoichiometry calculations.
\square Perform mass-mass stoichiometry calculations.
\square Perform mass-volume stoichiometry calculations.
\square Perform volume-volume stoichiometry calculations.
\square Explain the concept of a limiting reactant.

Objectives

\square Identify the limiting reactant in a chemical reaction given the number of moles of each reactant.
\square Perform mass-mass stoichiometry calculations involving a limiting reactant.
\square Perform mass-volume stoichiometry calculations involving a limi9ting reactant.
\square Perform volume-volume stoichiometry calculations involving a limiting reactant.
\square Calculate the percent yield for a reaction, given the actual yield and the theoretical yield.

Mole - Mole Problems

\square Write the balanced chemical equation for the reaction.
\square Find the ratio of the number of moles of each substance.
\square Use the ratio as a Unit Factor to find the number of moles of the other substance.

Sample Mole - Mole Problem

Nitrogen gas combines with oxygen gas according to the equation: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow$ NO. How many moles of NO are produced when 2.25 moles of oxygen react with nitrogen?
Balance Equation: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
Unit Equation: $2 \mathrm{~mol} \mathrm{NO}=1 \mathrm{~mol} \mathrm{O}_{2}$
Find Moles NO: $2.25 \mathrm{~mol} \mathrm{O}_{2} \times 2 \mathrm{~mol} \mathrm{NO} / 1 \mathrm{~mol} \mathrm{O}_{2}=4.5 \mathrm{~mol} \mathrm{NO}$

Sample Mole - Mole Problem

12.5 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with CO to produce Fe and CO_{2} according to the equation: $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$. How many moles of CO_{2} are produced?
Balance Equation: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
Unit Equation: $3 \mathrm{~mol} \mathrm{CO}_{2}=1 \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$
Find Moles of CO_{2} :
$12.5 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \times 3 \mathrm{~mol} \mathrm{CO} / 1 \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}=37.5 \mathrm{~mol} \mathrm{CO} 2$

Mass - Mass Problems

\square Write the balanced chemical equation for the reaction.
\square From the mass of the given substance, calculate the number of moles of that substance.
\square Find the ratio of the number of moles of each substance from the coefficients in the balanced equation.
\square Use the ratio as a unit factor to find the number of moles of the second substance.
\square Calculate the mass of the second substance.

Sample Mass - Mass Problem

Carbon combines with oxygen to produce carbon monoxide according to the equation:

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}
$$

Find the mass of CO produced from 28.0 g of carbon.
Balance Equation: $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
Calculate moles of C :
$28.0 \mathrm{~g} \mathrm{C} \mathrm{X} 1 \mathrm{~mol} \mathrm{C} / 12.00 \mathrm{~g} \mathrm{C}=2.33 \mathrm{~mol} \mathrm{C}$ Unit Equation: $2 \mathrm{~mol} \mathrm{CO}=2 \mathrm{~mol} \mathrm{C}$
Find moles of CO :
$2.33 \mathrm{~mol} \mathrm{C} ~ 2 ~ 2 ~ m o l ~ C O / 2 ~ m o l ~ C ~=~ 2.33 ~ m o l ~ C O ~ O ~$
Calculate mass of CO:
$2.33 \mathrm{~mol} \mathrm{CO} \times 28.01 \mathrm{~g} \mathrm{CO} / 1 \mathrm{~mol} \mathrm{CO}=65.4 \mathrm{~g} \mathrm{CO}$

Mass - Volume Problems

\square Write the balanced chemical equation for the reaction.
\square From the mass or volume of the first substance, calculate the number of moles of that substance.
\square Find the ratio of the number of moles of each substance from the coefficients in the balanced equation.
\square Use the ratio as a unit factor to find the number of moles of the other substance.
\square Calculate the volume or mass of the second substance.

Sample Mass - Volume Problem

Consider the reaction in the previous problem. How many liters of CO result from the combination of 28.0 g of C and O_{2} ?
Balance Equation: $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
Calculate moles of $\mathrm{C}: 28 \mathrm{~g} \mathrm{CX1} \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C}=2.33 \mathrm{~mol} \mathrm{C}$ Unit Equation: $2 \mathrm{~mol} \mathrm{CO}=2 \mathrm{~mol} \mathrm{C}$
Find moles of CO :
$2.33 \mathrm{~mol} \mathrm{C} \times 2 \mathrm{~mol} \mathrm{CO} / 2 \mathrm{~mol} \mathrm{C}=2.33 \mathrm{~mol} \mathrm{CO}$
Calculate volume of CO:
$2.33 \mathrm{~mol} \mathrm{CO} \times 22.4 \mathrm{LCO} / 1 \mathrm{~mol} \mathrm{CO}=52.2 \mathrm{LCO}$

Volume - Volume Problems

$\square \quad$ Write the balanced chemical equation for the reaction
\square From the volume of the first substance, calculate the number of moles of that substance.
\square Find the ratio of the number of moles of each substance from the coefficients in the balanced equation.
\square Use the ratio as a unit factor to find the number of moles of the second substance
\square Calculate the volume of the second substance.

Sample Volume - Volume Problem

Find the volume of CO produced when 12.0 L of O_{2} combine with carbon.

Balance Equation: $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
Calculate moles of O_{2} :

$$
12.0 \mathrm{LO}_{2} \times 1 \mathrm{~mol} \mathrm{O}_{2} / 22.4 \mathrm{LO}_{2}=0.536 \mathrm{~mol} \mathrm{O}_{2}
$$

Unit Equation: $2 \mathrm{~mol} \mathrm{CO}=1 \mathrm{~mol} \mathrm{O}_{2}$
Find moles of CO :
$0.536 \mathrm{~mol} \mathrm{O}_{2} \times 2 \mathrm{~mol} \mathrm{CO} / 1 \mathrm{~mol} \mathrm{O}_{2}=1.07 \mathrm{~mol} \mathrm{CO}$
Calculate volume of CO :

$$
1.07 \mathrm{~mol} \mathrm{CO} \times 22.4 \mathrm{LCO} / 1 \mathrm{~mol} \mathrm{CO}=24.0 \mathrm{LCO}
$$

Limiting Reactant Problems

\square Calculate the number of moles of product using the amount of the first substance.
\square Calculate the number of moles of product using the amount of the second substance.
\square The amount of product will be equal to the smaller of these two results.

Sample Limiting Reactant Problem

How much iron will be produced when 98.0 g of FeO react with 56.0 g of Al ?

Balance equation: $3 \mathrm{FeO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Find Moles of FeO :
$98.0 \mathrm{~g} \mathrm{FeO} \times 1 \mathrm{~mol} \mathrm{FeO} / 65.9 \mathrm{~g} \mathrm{FeO}=1.49 \mathrm{~mol} \mathrm{FeO}$
Unit Equation: $3 \mathrm{~mol} \mathrm{Fe}=3 \mathrm{~mol} \mathrm{FeO}$
Find Moles Fe :
$1.49 \mathrm{~mol} \mathrm{FeO} \times 1 \mathrm{~mol} \mathrm{Fe} / 1 \mathrm{~mol} \mathrm{FeO}=\mathbf{1 . 4 9} \mathbf{~ m o l ~ F e}$

Sample Limiting Reactant Problem

How much iron will be produced when 98.0 g of FeO react with 56.0 g of Al?

Balance equation: $3 \mathrm{FeO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Find Moles of $\mathrm{Al}: 56.0 \mathrm{~g} \mathrm{Al} \mathrm{X} 1 \mathrm{~mol} \mathrm{Al} / 27.0 \mathrm{~g} \mathrm{Al}=2.07 \mathrm{~mol} \mathrm{Al}$
Unit Equation: $3 \mathrm{~mol} \mathrm{Fe}=2 \mathrm{~mol} \mathrm{Al}$
Find Moles Fe: $2.07 \mathrm{~mol} \mathrm{Al} \times 3 \mathrm{~mol} \mathrm{Fe} / 2 \mathrm{~mol} \mathrm{Al}=\mathbf{3 . 1 1} \mathbf{~ m o l ~ F e}$ More product would be produced with 56.0 g of aluminum and an unlimited supply of FeO than with 98.0 g of FeO and an unlimited supply of AI. Therefore, in this situation, FeO is the limiting reactant.

Percent Yield

\square The percent yield is the actual yield divided by the theoretical yield multiplied by 100%

- Percent yield = (actual yield/theoretical yield) $\times 100 \%$

Sample Percent Yield Problem

[. If 15 kg of ammonia give an actual yield of 65.3 kg of ammonium nitrate, what is the percent yield? The calculated yield of ammonium nitrate for the experiment is 70.5 kg .

$$
\begin{array}{ll}
\text { Given: } & \text { Actual yield }=65.3 \mathrm{~kg} \\
& \text { Theoretical yield }=70.5 \mathrm{~kg} \\
& \text { Percent yield }=?
\end{array}
$$

Percent Yield $=($ Actual $/$ Theoretical $) \times 100 \%$
Percent Yield $=(65.3 \mathrm{~kg} / 70.5 \mathrm{~kg}) \times 100 \%$
Percent Yield $=92.6 \%$

