The Language of Chemistry

Objectives

\square Classify a compound as a binary ionic or a ternary ionic compound.
\square Classify an acid as a binary acid or a ternary oxyacid.

- Classify an ion as a monoatomic cation, a monoatomic anion, a polyatomic cation or a polyatomic anion.
\square Write Stock system names and formulas for common monoatomic ions.
\square Write Latin system names and formulas for common monoatomic ions

Objectives

\square Predict the ionic charge for ions of representative elements.
\square Write systematic names and formulas for common polyatomic ions.
\square Determine the ionic charge on a cation in a binary ionic compound.
\square Write Stock system names and formulas fro binary ionic compounds.
W Write Latin system names and formulas fro binary ionic compounds.

Objectives

\square Determine the ionic charge on a cation in a ternary ionic compound.
$\square \quad$ Write Stock system names and formulas for ternary ionic compounds.
$\square \quad$ Write Latin system names and formulas for ternary ionic compounds.
\square Write the systematic names and formulas for binary molecular compounds.
$\square \quad$ Write the systematic names and formulas for binary acids.
$\square \quad$ Write the systematic names and formulas for ternary oxyacids.

Cations

\square Cations: Ions with a positive charge.

- Monoatomic Cations: Cations that contain only one element.
- Elements with a single charge - Name of the element followed by the word ion.
$\square \mathrm{Al}^{3+}$
- Ba^{2+}
$\square \mathrm{Cd}^{2+}$
$\square \mathrm{Li}^{+}$
$\square \mathrm{Mg}^{2+}$
$\square \mathrm{K}^{+}$
$\square \mathrm{Ag}^{+}$
$\square \mathrm{Na}^{+}$
ㅁ Zn^{2+}

Aluminum Ion
Barium Ion
Cadmium Ion
Lithium Ion
Magnesium Ion
Potassium Ion
Silver Ion
Sodium Ion
Zinc Ion

Cations

- Ions with more than one possible ionic charge (Stock System) - Name of the element followed by a Roman numeral in parentheses to indicate the charge, then the word ion.
$\square \mathrm{Co}^{2+}$
- Co^{3+}

ㅁ Cu^{+}
$\square \mathrm{Cu}^{2+}$
$\square \mathrm{Cr}^{2+}$
$\square \mathrm{Cr}^{3+}$
ㅁ Fe^{2+}
$\square \mathrm{Fe}^{3+}$

Cobalt(II) Ion
Cobalt(III) Ion
Copper(I) Ion
Copper(II) Ion
Chromium(II) Ion
Chromium(III) Ion
Iron(II) Ion
Iron(III) Ion

Cations

- The Stock System.
$\square \mathrm{Pb}^{2+}$
- Pb^{4+}
- Mn^{2+}
$\square \mathrm{Hg}_{2}{ }^{2+}$
- Hg^{2+}
- Ni^{2+}
- Sn^{2+}

ㅁ Sn^{4+}

Lead(II) Ion
Lead(IV) Ion
Manganese(II) Ion
Mercury(I) Ion
Mercury(II) Ion
Nickel(II) Ion
Tin(II) Ion
Tin(IV) Ion

Cations

\square Ions with more than one possible ionic charge (Latin System):

- For the ion with the smaller ionic charge - Add the ous suffix to the Latin name of the element, then the word ion.
$\square \mathrm{Co}^{2+}$
$\square \mathrm{Cu}^{+}$
$\square \mathrm{Fe}^{2+}$
$\square \mathrm{Pb}^{2+}$
$\square \mathrm{Hg}_{2}{ }^{2+}$
$\square \mathrm{Sn}^{2+}$

Cobaltous Ion
Cuprous Ion
Ferrous Ion
Plumbous Ion
Mercurous Ion
Stannous Ion

Cations

\square Latin System:

- For the ion with the larger ionic charge - Add the ic suffix to the Latin name of the element, then the word ion.
$\square \mathrm{Co}^{3+}$
$\square \mathrm{Cu}^{2+}$
- Fe^{3+}
- Pb^{4+}
$\square \mathrm{Hg}^{2+}$
- Sn^{4+}

Cobaltic Ion
Cupric Ion
Ferric Ion
Plumbic Ion
Mercuric Ion
Stannic Ion

Cations

\square Polyatomic Cations - Cations that contain more than one element.

- $\mathrm{NH}_{4}{ }^{+}$ Ammonium Ion

Anions

\square Anions - Ions with a negative charge.

- Monoatomic Anions - Anions that contain only one element.
- Monoatomic Anions - Name of the element with the suffix ide followed by the word ion.
$\square \mathrm{Br}$
$\square \mathrm{Cl}^{-}$
- F^{-}
- I-
$\square \mathrm{N}^{3-}$
$\square \mathrm{O}^{2-}$
ㅁ P^{3-}
- S^{2-}

Bromide Ion
Chloride Ion
Fluoride Ion
Iodide Ion
Nitride Ion
Oxide Ion
Phosphide Ion
Sulfide Ion

Anions

- Polyatomic Anions - Anions that contain more than one element.
$\square \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-} \quad$ Acetate Ion
$\square \mathrm{CO}_{3}{ }^{2-}$
$\square \mathrm{ClO}_{3}{ }^{-}$
$\square \mathrm{ClO}_{2}^{-}$
$\square \mathrm{CrO}_{4}{ }^{2-}$
$\square \mathrm{CN}^{-}$
$\square \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
$\square \mathrm{HCO}_{3}{ }^{-}$
$\square \mathrm{HSO}_{4}{ }^{2-}$
$\square \mathrm{OH}^{-}$

Carbonate Ion
Chlorate Ion
Chlorite Ion
Chromate Ion
Cyanide Ion
Dichromate Ion
Hydrogen Carbonate Ion
Hydrogen Sulfate Ion
Hydroxide Ion

Anions

- Polyatomic Anions
$\square \mathrm{ClO}^{-}$
$\square \mathrm{NO}_{3}{ }^{-}$
$\square \mathrm{NO}_{2}{ }^{-}$
$\square \mathrm{ClO}_{4}^{-}$
$\square \mathrm{MnO}_{4}^{-}$
$\square \mathrm{PO}_{4}{ }^{3-}$
$\square \mathrm{SO}_{4}{ }^{2-}$
$\square \mathrm{SO}_{3}{ }^{2-}$

Hypochlorite Ion
Nitrate Ion
Nitrite Ion
Perchlorate Ion
Permanganate Ion
Phosphate Ion
Sulfate Ion
Sulfite Ion

Binary Ionic Compounds

\square Binary Ionic compounds are composed of one metal and one nonmetal ion.
\square The cation is always written first and the anion last.
\square In naming the compound, the name of the cation is always written first, followed by the name of the anion with the suffix ide.
\square The ionic charge for the compound must equal zero.

Binary Ionic Compounds

\square Examples of Binary Ionic Compounds:

- KCl
Potassium Chloride
- NaBr

Sodium Bromide

- CaI_{2}

Calcium Iodide

- CaO

Calcium Oxide

- $\mathrm{Al}_{2} \mathrm{O}_{3} \quad$ Aluminum Oxide

Ternary Ionic Compounds

\square Ternary Ionic Compounds contain a metal and at least two other elements.
\square The cation is written first and the polyatomic ion is written last.
\square In naming the compound, the name of the cation is written first, followed by the name of the polyatomic anion. The names usually end with the ate or the ite suffix.
\square The ionic charge for the compound must equal zero.

Ternary Ionic Compounds

\square Examples of ternary ionic compounds:

- AgNO_{3}
- KMnO_{4}
- CaCO_{3}
- $\mathrm{Na}_{2} \mathrm{SO}_{4}$
- $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Silver Nitrate
Potassium Permanganate
Calcium Carbonate
Sodium Sulfate
Magnesium Phosphate

Binary Molecular Compounds

\square Binary molecular compounds are composed of two nonmetal elements.
\square The most metallic element is written first. The standard order from most metallic to least metallic is C, P, N, H, S, I, Br, Cl, O, F.
\square In naming the compound, the name of the most metallic element is written first and the name of the least metallic element is written last followed by the ide suffix.
\square Greek prefixes are used to indicate the number of atoms of each element when there is more than one atom of that element.

Binary Molecular Compounds

\square Examples of binary molecular compounds:

\author{

- CO
 - NO
 - IF_{6}
 - $\mathrm{Br}_{3} \mathrm{O}_{8}$
}

Carbon Monoxide
Nitrogen Monoxide
Iodine Hexaflouride
Tribromine Octaoxide

- $\mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ Dichlorine Pentaoxide
- $\mathrm{P}_{2} \mathrm{I}_{4}$ Diphosphorus Tetraiodide

Binary Acids

\square A binary acid is an aqueous solution of a compound containing hydrogen an a nonmetal.
\square Binary acids are named by using the hydro prefix before the nonmetal stem and adding the ic acid suffix.
\square Examples of Binary Acids:

- $\mathrm{HCl}(\mathrm{aq})$
- HF(aq)
- $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$

Hydrochloric Acid
Hydrofluoric Acid
Hydrosulfuric Acid

Ternary Oxyacids

\square A ternary oxyacid is an aqueous solution of a compound containing hydrogen and a polyatomic ion.
\square Ternary oxyacids are named by adding ic acid or ous acid to the nonmetal stem.
\square Examples:

- $\mathrm{HClO}_{4}(\mathrm{aq})$ Perchloric Acid
- $\mathrm{HClO}_{3}(\mathrm{aq})$ Chloric Acid
- $\mathrm{HClO}_{2}(\mathrm{aq})$ Chlorous Acid
- $\mathrm{HClO}(\mathrm{aq})$ Hypochlorous Acid
ClO_{4}^{-}Perchlorate Ion
$\mathrm{ClO}_{3}{ }^{-}$Chlorate Ion
$\mathrm{ClO}_{2}{ }^{-}$Chlorite Ion
ClO^{-}Hypochlorite Ion

