Matter and Energy

Objectives

- Describe the characteristics of solids, liquids, and gases.
- Classify a sample of matter as an element, compound, or mixture.
- Given the name of one of the 48 common elements, write the symbol.
- Given the symbol for one of the 48 common elements, write the name.
- Classify an element as a metal or a nonmetal.

Objectives

- Predict whether an element is a metal, nonmetal, or semimetal given its position in the periodic table.
- Predict whether an element is a solid, liquid, or gas at 25 °C and normal atmospheric pressure.
- Given the chemical formula for a compound, state the number of atoms of each element in the compound.
- Classify a property of a substance as physical or chemical.

Objectives

- Classify a change in a substance as physical or chemical.
- List observations that indicate a chemical change is occurring.
- Apply the conservation of mass law to chemical changes.
- Apply the conservation of energy law to physical and chemical changes.

The Solid State

- □ Fixed Shape
- Definite Volume
- Tightly packed particles
- Incompressible

The Liquid state

- Variable Shape
- Definite Volume
- Loosely Packed Particles
- Only Slightly Compressible

The Gaseous State

- Variable Shape
- Indefinite Volume
- Widely Spaced Particles
- Compressible

Changes of State

- Melting Changing from a solid to a liquid.
- Freezing Changing from a liquid to a solid.
- Vaporization Changing from a liquid to a gas.
- Condensation Changing from a gas to a liquid.
- Sublimation Changing from a solid to a gas.
- Deposition Changing from a gas to a solid.

Examples of Changes of State

- Melting Ice changing from a solid to a liquid.
- Deposition Iodine changing from a gas to a solid.
- Freezing Sulfur changing from a liquid to a solid.
- Vaporization Alcohol changing from a liquid to a gas.
- Sublimation Dry ice changing from a solid to a gas.
- Condensation Natural gas changing from a gas to a liquid.

Classifying Matter

Heterogeneous Matter - Matter that has properties that vary widely form one place to another. Heterogeneous matter can be separated into two or more homogeneous substances by physical means.

Heterogeneous Mixture

Classifying Matter

- Homogeneous Matter Matter in which the composition is uniform throughout.
 - Homogeneous Mixture
 - Solution A homogeneous mixture consisting of a solid, liquid, or gas dissolved in another solid, liquid, or gas.
 - Alloy A homogeneous mixture of two metals.
 - Pure Substance Matter that has a definite composition and consistent properties.
 - Compound Matter that can be separated into two or more substances by chemical means.
 - Element Matter that cannot be broken down further by any chemical change.

Common Chemical Elements

- Oxygen
- Silicon
- Aluminum
- Iron
- Nickel
- Calcium
- Sodium
- Potassium
- Magnesium
- Hydrogen
- Carbon

- Nitrogen
- Chlorine
- Gold
- Silver
- Helium
- Iodine
- Lead
- Mercury
- Phosphorus
- Sulfur
- Zinc

Chemical Symbols

- □ First letter of the name, always capitalized.
 - Carbon C
 - Hydrogen H
 - Oxygen O
- First letter and another letter, first letter capitalized, second letter lower case.
 - Helium He
 - Magnesium Mg
 - Chlorine Cl

Chemical Symbols

Symbol derived from the Latin name.

Lead	Plumbum	Pb
Gold	Aurum	Au
Silver	Argentum	Ag
Iron	Ferrum	Fe

Classifying Elements

Metal

- Bright metallic luster
- High density
- High melting point
- Good conductor of heat and electricity.
- Malleable

Ductile

Classifying Elements

Nonmetal

- Dull appearance
- Low density
- Low melting point
- Poor conductor of heat and electricity
- Neither malleable nor ductile
- Semimetal or metalloid Properties between a metal and a nonmetal.

The Periodic Table

- Lists all known elements arranged by atomic number.
- Metals are on the left, nonmetals are on the right, and metalloids are in the middle.
- Except for mercury, all metals and metalloids are solids at room temperature.
- Nonmetals are found in all three states at room temperature.

Chemical Formulas

- Law of Definite Proportions -Compounds always contain the same elements in a consistent proportion by mass.
 - NaCl 39.3% sodium, 60.7% chlorine
 - H₂O 11.2% hydrogen, 88.8% oxygen
- Chemical Formula A chemical formula expresses the number of atoms of each element in a compound with a subscript.

Chemical Formula Examples

- H₂O Two atoms of hydrogen, one atom of oxygen
- NaCl One atom of sodium, one atom of chlorine
- \square CO₂ One atom of carbon, two atoms of oxygen.

Al₂(SO₄)₃ - Two atoms of aluminum, three atoms of sulfur, 12 atoms of oxygen

Physical and Chemical Properties

- Physical Properties Characteristics of a substance that can be observed without changing the composition of the substance.
 - Appearance
 - Melting and boiling points
 - Density
 - Conductivity
 - Solubility
 - Physical State

Physical and Chemical Properties

Chemical Properties - Properties that can be observed only when a substance reacts chemically with another substance.

- Reaction with oxygen
- Reaction with water
- Reaction with acid

Physical and Chemical Change

- Physical Change A change in which the composition of the substance does not change.
 - Melting ice
 - Evaporating alcohol
 - Crushing an aluminum can

Physical and Chemical Change

- Chemical Change A change in which the chemical composition of the substance is altered leading to a new set of properties.
 - A banana ripening
 - An antacid tablet fizzing
 - Fireworks exploding

Physical and Chemical Change

□ Indications of chemical change:

- Permanent change in color
- An odor
- Bubbles resulting from the release of a gas
- Heat
- Light
- Production of an insoluble substance when two solutions are mixed.

Conservation of Mass

- During any chemical reaction, mass is neither created nor destroyed.
 - Electrolysis: 27 g of H₂O yields 3 g of hydrogen and 24 g of oxygen.
 - Burning Magnesium: 2.43 g Mg and 1.60 g O yield 4.03 g MgO
 - Combining zinc and sulfur: .654 g Zn and .321 g S yield .975 g ZnS

Energy

- Kinetic Energy Energy associated with the overall motion of an object.
- Gravitational Potential Energy energy associated with the position of an object relative to the earth.
- Chemical Potential Energy Energy associated with the chemical composition of a substance.
- Thermal Energy Energy associated with the motion of the atoms and molecules of a substance.

□ An increase in thermal energy might:

- Cause an increase in temperature.
- Cause a substance to melt.
- Cause a substance to vaporize.

Conservation of Energy

- The Law of Conservation of Energy Energy cannot be created or destroyed. It can only be converted from one form to another.
 - Conservation of Energy during physical changes:
 Water boiling
 - Energy of crystallization
 - Conservation of Energy during chemical changes:
 - \square 2H₂ + 2O₂ yields 2H₂ O + 3200 cal
 - Cold pack reaction